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Abstract. Accurate simulations of soil respiration and carbon dioxide (CO2) efflux are critical to project global 

biogeochemical cycles and the magnitude of carbon (C) feedbacks to climate change in Earth system models (ESMs). 15 

Currently, soil respiration is not represented well in ESMs, and few studies have attempted to address this deficiency. In this 

study, we evaluated the simulation of soil respiration in the Energy Exascale Earth System Model (E3SM) using long-term 

observations from the Missouri Ozark AmeriFlux (MOFLUX) forest site in the central U.S. Simulations using the default 

model parameters significantly underestimated annual soil respiration and gross primary production, while underestimating 

soil water potential during growing seasons and overestimating it during non-growing seasons. A site-specific soil water 20 

retention curve significantly improved modelled soil water potential, gross primary production and soil respiration. However, 

the model continued to underestimate soil respiration during peak growing seasons, and overestimate soil respiration during 

non-peak growing seasons. One potential reason may be that the current model does not adequately represent the seasonal 

cycle of microbial organisms and soil macroinvertebrates, which have high biomass and activity during peak growing 

seasons and tend to be dormant during non-growing seasons. Our results confirm that modelling soil respiration can be 25 

significantly improved by better model representations of the soil water retention curve. 

1 Introduction 

Globally, soils store over twice as much carbon (C) as the atmosphere (Chapin III et al., 2011). Soil respiration (SR) is the 

second largest C flux between terrestrial ecosystems and the atmosphere (Luo and Zhou, 2006). An accurate simulation of 

SR is critical for projecting terrestrial C status, and therefore climate change, in Earth system models (ESMs) (IPCC, 2013). 30 

Despite significant experimental data accumulation and model development during the past decades, simulations of soil CO2 
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efflux to the atmosphere still have a high degree of uncertainty (Friedlingstein et al., 2006; Jones et al., 2013; Todd-Brown et 

al., 2013; Todd-Brown et al., 2014; Tian et al., 2015), calling for comprehensive assessments of model performance against 

observational data. 

To assess the performance of ESMs, different types of data can be used. For example, using atmospheric CO2 

measurements, eddy covariance measurements and remote sensing images, Randerson et al. (2009) found that two ESMs 5 

underestimated net C uptake during the growing season in temperate and boreal forest ecosystems, primarily due to the 

delays in the timing of maximum leaf area in the models. By comparing remote sensing estimations from the Moderate 

Resolution Imaging Spectroradiometer and flux tower datasets, Xia et al. (2017) found that better representations of 

processes controlling monthly maximum gross primary productivity (GPP) and vegetation C use efficiency (CUE) improved 

the ability of models to predict the C cycle in permafrost regions. 10 

Despite the significance of large global SR fluxes, SR has rarely been evaluated in ESMs using long-term observations. 

Among the factors that influence SR, soil water potential (SWP) provides a unified measure of the energy state of soil water 

that limits the growth and respiration of plants and microbes. Unlike soil temperature (ST) or soil volumetric water content 

(VWC), however, SWP is difficult to directly monitor in the field. Accurate estimation of SWP largely relies on the soil 

water retention curve (i.e., the relationship between VWC and SWP), which is highly specific to soil properties (Childs, 15 

1940; Clapp and Hornberger, 1978; Cosby et al., 1984; Tuller and Or, 2004; Moyano et al., 2013). Site-level data have been 

used to evaluate model representations of other processes, such as phenology, net primary production (NPP), transpiration, 

leaf area index (LAI), water use efficiency, and nitrogen use efficiency (Richardson et al., 2012; De Kauwe et al., 2013; 

Walker et al., 2014; Zaehle et al., 2014; Mao et al., 2016; Duarte et al., 2017; Montané et al., 2017). In Powell et al. (2013), 

the only aspect concerning SR was the sensitivity of SR to VWC in an Amazon forest, but the study resulted in no 20 

improvements to simulated SR. Here, we focus on improving simulations by using site-specific measurements to assess 

multiple factors influencing SR. 

We will evaluate the simulation of SR step by step. We assessed underlying mechanisms in the Energy Exascale Earth 

System Model (E3SM) by using intensive observations at the Missouri Ozark AmeriFlux (MOFLUX) forest site in the 

central U.S. We first evaluated the effects of two abiotic factors, ST and SWP, on the simulation of SR. Then we evaluated 25 

the effects of biotic factors, such as GPP, LAI and Q10 of heterotrophic respiration, on the simulation of surface CO2 efflux 

to the atmosphere. 

2 Materials and Methods 

2.1 Study site and measurements 

The MOFLUX site is located in the University of Missouri’s Thomas H. Baskett Wildlife Research and Education Area 30 

(latitude 38º44’39”N, longitude 92º12’W). The mean annual precipitation is 1083 mm, while minimum and maximum 

monthly mean temperatures are −1.3 ºC (January) and 25.2 ºC (July), respectively. The site is a temperate, upland oak-
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hickory forest, with major tree species consisting of white oak (Quercus alba L.), black oak (Q. velutina Lam.), shagbark 

hickory (Carya ovata (Mill.) K. Koch), sugar maple (Acer saccharum Marsh.), and eastern red cedar (Juniperus virginiana 

L.) (Gu et al., 2016; Wood et al., 2017). The dominant soils are the Weller silt loam and the Clinkenbeard very flaggy clay 

loam (Young et al., 2001). 

Ecosystem C, water and energy fluxes, SR, LAI and supporting meteorological measurements were initiated in June 5 

2004 (Gu et al., 2016). Soil respiration was measured within the ecosystem flux footprint using non-flow through non-steady 

state auto-chambers. From 2004 through 2013, SR was measured using eight automated, custom-built, chambers (ED 

system; Edwards and Riggs, 2003; Gu et al., 2008) coupled with an infrared gas analyzer (LI-820 Li-Cor Inc., Lincoln, 

Nebraska). In 2013, this system was replaced with 16 auto-chambers operated using the closed-path system (model LI-8100; 

Li-Cor Inc., Lincoln, Nebraska). The two systems (ED and Li-8100) were operated side-by-side for several weeks in 2010 10 

and found to produce comparable responses (Paul Hanson, personal communication).  Half-hourly SR time series were 

generated to coincide with the ecosystem flux data set by averaging those chambers sampled in the corresponding averaging 

period. Net ecosystem CO2 exchange (NEE) was measured on a 32-m walk-up scaffold tower (Gu et al., 2016). A soil 

temperature profile sensor (model STP01, HuksefluxUSA, Inc., Center Moriches, NY) measured at 5 depths down to 0.5 m. 

Soil VWC was measured using water content reflectometers (model CS616, Campbell Scientific Inc., Logan UT) installed 15 

beneath each soil chamber. All the data were recorded at half-hourly intervals, which were integrated over time to obtain 

daily and annual fluxes. 

2.2 Ecosystem C flux partitioning 

Flux-tower GPP was estimated from measured NEE. To reduce biases resulting from individual methods, three NEE-

partitioning approaches were employed. The average and variation of the three methods were used to evaluate the model-20 

simulated GPP. In the first two methods, ecosystem respiration (ER) was estimated from nighttime NEE and extrapolated to 

daytime, and daytime GPP was calculated from NEE and the extrapolated ER (Reichstein et al., 2005). The only difference 

between the two methods was whether to exclude night-time data under non-turbulent conditions. In the third method, GPP 

was estimated by fitting the light-response curve between NEE and radiation (Lasslop et al., 2010). All the partitioning 

calculations were conducted using the R package REddyProc (Reichstein et al., 2017). 25 

2.3 Model description 

The E3SM includes coupled carbon and nitrogen cycles, with 10 belowground layers in the biogeochemical module. The 

land model of E3SM was developed from Community Land Model (CLM 4.5) (Oleson et al., 2013). We implemented off-

line E3SM Land Model (ELM) simulations with the CLM-CN soil decomposition module (Thornton and Rosenbloom, 2005; 

Bonan et al., 2013). In the model, SR was calculated by different CO2 emission components (Oleson et al., 2013):  30 

𝑆𝑅 = 𝑅𝐴 + 𝑅𝐻                                                                       Eq. (1) 

𝑅𝐴 = 𝑅𝑀 + 𝑅𝐺                                                                       Eq. (2) 
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𝑅𝑀 = 𝑅𝑙𝑖𝑣𝑒𝑐𝑟𝑜𝑜𝑡 +𝑅𝑓𝑟𝑜𝑜𝑡                                                    Eq. (3) 

𝑅𝑙𝑖𝑣𝑒𝑟𝑜𝑜𝑡 = [𝑁]𝑙𝑖𝑣𝑒𝑐𝑟𝑜𝑜𝑡𝑅𝑏𝑎𝑠𝑒𝑅𝑞10
(𝑇2𝑚−20)/10                     Eq. (4) 

𝑅𝑓𝑟𝑜𝑜𝑡 =∑[𝑁]𝑓𝑟𝑜𝑜𝑡𝑟𝑜𝑜𝑡𝑓𝑟𝑗𝑅𝑏𝑎𝑠𝑒𝑅𝑞10
(𝑇2𝑚−20)/10

10

𝑗=1

          Eq. (5) 

𝑅𝐺 = 0.3𝐶𝑛𝑒𝑤_𝑟𝑜𝑜𝑡                                                                 Eq. (6) 

𝑅𝐻 =∑∑𝑆𝑂𝐶𝑖𝑗𝑘𝑖𝑟𝑓𝑖𝜉𝑇𝜉𝑊𝜉𝑂𝜉𝐷𝜉𝑁

4

𝑖=1

10

𝑗=1

                             Eq. (7) 5 

where RA and RH are belowground autotrophic and heterotrophic respiration, respectively. RA is the sum of root maintenance 

(RM) and growth respiration (RG). Rlivecroot and Rfroot are maintenance respiration of live course root and fine root. [N]livecroot 

and [N]froot are nitrogen content of live coarse and fine roots. Rbase is the base maintenance respiration at 20 ºC. Rq10 which 

equals 2, is the temperature sensitivity of maintenance respiration. T2m is the air temperature at 2 m. Cnew_root is the new root 

growth C. RH is the sum of heterotrophic respiration of four SOC pools with different turnover rates (Oleson et al., 2013) in 10 

the 10 soil layers. The parameters ki and rfi are the turnover rate and respiration fraction of the ith pool. T, W,O,D,N are 

environmental modifiers of soil temperature, soil water content, oxygen, depth and nitrogen for each layer, respectively. A 

detailed description of the environmental modification can be found in Oleson et al. (2013). Briefly, the temperature and 

water modifiers were: 

𝜉𝑇 = 𝑄10
(
𝑇𝑠𝑜𝑖𝑙−𝑇𝑟𝑒𝑓

10 )

                                                                               Eq. (8) 15 

𝜉𝑊 =

{
 

 
0                           𝑓𝑜𝑟 Ψ < Ψ𝑚𝑖𝑛

𝑙𝑜𝑔(Ψ𝑚𝑖𝑛 Ψ𝑚⁄ )

𝑙𝑜𝑔(Ψ𝑚𝑖𝑛 Ψ𝑠⁄ )
              𝑓𝑜𝑟 Ψ𝑚𝑖𝑛 ≤ Ψ ≤ Ψ𝑚𝑎𝑥

1                           𝑓𝑜𝑟 Ψ > Ψ𝑚𝑎𝑥  

           Eq. (9) 

where Q10 is the temperature sensitivity (the default value is 1.5), Tref is the reference temperature (25 ºC). m is the matric 

water potential, min is the lower limit for matric potential, and s is the matric water potential under saturated conditions. 

The E3SM is a grid-based ESM. To assess it using site-level observations, we used a point-run framework which allows the 

model to simulate individual sites (Mao et al., 2016). With site-specific forcing, a 200-year accelerated decomposition spin-20 

up was performed, followed by a 200-year normal spin-up, before the transient simulation was performed from 1850 to 2013. 

The vegetation was set as 100% temperate deciduous forest. 

2.4 Soil water retention curve 

Soil water potential values for the Weller soils (https://soilseries.sc.egov.usda.gov/OSD_Docs/W/WELLER.html) were 

estimated from observed VWC and soil water retention curves that were developed for the site. To derive the soil water 25 

retention curves,  soil samples were collected in the area of the flux tower base at two depths: 0 to 30 cm and below 30 cm. 
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Samples were evaluated periodically for soil water potential using a dewpoint potentiometer (Decagon Devices, Model 

WP4C) as they dried over time (Hanson et al., 2003). 

In the E3SM, the SWP was calculated from VWC based on the Clapp & Hornberger model (Clapp and Hornberger, 

1978), in which the SWP-VWC relationship was expressed as 

Ψ𝑚 = Ψ𝑠 (
𝜃

𝜃𝑠
)
−𝐵

                                                                           Eq. (10) 5 

where 𝜃 and Ψ𝑚 are the VWC and matric potential (MPa); and 𝜃𝑠 and Ψ𝑠  are VWC and matric potential under saturated 

conditions, and B is a parameter to determine the shape of the SWP-VWC relationship. In the E3SM, all parameters were 

calculated from the fraction of organic matter (fom), clay content (fclay; %) and sand content (fsand; %) (Cosby et al., 1984; 

Lawrence and Slater, 2008), where 

Ψ𝑠 = −((1 − 𝑓𝑜𝑚) × 10 × 10
1.88−0.0131𝑓𝑠𝑎𝑛𝑑 + 10.3𝑓𝑜𝑚)       Eq. (11) 10 

𝜃𝑠 = ((1 − 𝑓𝑜𝑚) × (0.489 − 0.00126𝑓𝑠𝑎𝑛𝑑) + 0.9𝑓𝑜𝑚)          Eq. (12) 

𝐵 = (1 − 𝑓𝑜𝑚) × (2.91 + 0.159𝑓𝑐𝑙𝑎𝑦) + 2.7𝑓𝑜𝑚                         Eq. (13) 

In addition to the Clapp & Hornberger model, four other empirical models (Brooks and Corey, 1964; van Genuchten, 

1980; Fredlund and Xing, 1994; Hanson et al., 2003) were also used to fit the SWP curve against VWC (Table 1, Figure 1). 

In the Brooks & Corey model, the SWP-VWC relationship was expressed as 15 

𝜃 − 𝜃𝑟
𝜃𝑠 − 𝜃𝑟

= {(
Ψ𝑏
Ψ𝑚

)
𝜆

          Ψ𝑚 > Ψ𝑏

1                     Ψ𝑚 ≤ Ψ𝑏

                                              Eq. (14) 

where 𝜃𝑟  and 𝜃𝑠  are the residual and saturated water contents, respectively, 𝜃  and Ψ𝑚  are measured VWC and matric 

potential (MPa), Ψ𝑏  is a parameter related to the soil matric potential at air entry, and 𝜆 is related to the soil pore size 

distribution (Brooks and Corey, 1964).  

In the Fredlund & Xing model, the SWP-VWC relationship was described as 20 

𝜃 − 𝜃𝑟
𝜃𝑠 − 𝜃𝑟

= [
1

ln (𝑒 + (Ψ𝑚 𝑎⁄ )𝑛)
]
𝑚

                                                Eq. (15) 

where a, n and m are parameters determining the shape of the soil water characteristic curve (Fredlund and Xing, 1994).  

In the Hanson model (Hanson et al., 2003), soil matric potential was modeled by a double exponential function: 

Ψ𝑚 = −𝑎𝑏𝜃
𝑐
− 𝑑                                                                          Eq. (16) 

where a, b, c and d are fitted parameters.  25 

In the van Genuchten model, the SWP-VWC relationship was described as 

𝜃 − 𝜃𝑟
𝜃𝑠 − 𝜃𝑟

= [
1

1 + (𝛼Ψ𝑚)
𝑛]
(1−1 𝑛⁄ )

                                            Eq. (17) 

where 𝛼 (MPa-1) and n are parameters that determine the shape of the soil-water curve (van Genuchten, 1980).  
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In addition to the default SWP-VWC relationship in the E3SM, all the five empirical models were parameterized using 

non-linear fitting against measured VWC and SWP data from the study site. The root-mean-square error (RMSE) was used 

to select the best model representing the SWP-VWC relationship, where smaller RMSE implies a better fit to observational 

data. The best-fit model was used in two ways. First, it was used to calculate the “observed” SWP from monitored VWC in 

the field. Second, it was implemented in the E3SM to replace the default SWP model in order to improve the SWP 5 

simulation. 

2.5 Evaluation of SR in the model 

The evaluation of SR was conducted step by step. We first compared observations with the model default output of SR and 

related factors, including ST, SWP, GPP, and LAI. Thereafter, we attempted to improve the simulation of these factors in 

order to improve the overall SR simulation by (i) implementing the best-fit SWP-VWC relationship, and (ii) modifying 10 

model parameters related to GPP, LAI and SR. GPP-related parameters included the specific leaf area (SLA) at the top of 

canopy and the fraction of leaf nitrogen in the RuBisCO enzyme. LAI-related parameters included the number of days to 

complete leaf fall during the end of growing season, the critical day length for senescence (i.e., the length of the day when 

leaves start to senesce), and a parameter  that was used to produce a linearly-increasing rate of litterfall. In addition, the Q10 

of heterotrophic respiration was also modified. Because the parameter modification was dependent on the evaluation steps, 15 

how the parameters were modified is presented in the Results section. 

 

 

 

 20 

Figure 1: Observed (black dots) and simulated relationship between soil water potential (SWP) and volumetric water content 

(VWC) by the different models at two soil layers: (a) 0 to 30 cm and (b) below 30 cm. 

 

a b
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3 Results 

For the upper 30 cm of soil, E3SM simulations using the default Clapp and Hornberger model tended to underestimate the 

SWP when VWC was less than 15% (Fig. 1a), while SWP rapidly approached zero when VWC was greater than 25% (Fig. 

1a). For soil below 30 cm, the E3SM showed a consistent overestimation of SWP when VWC exceeded 15% (Fig. 1b). The 

default E3SM showed relatively high RMSE for both soil layers, indicating that the SWP-VWC relationship was not well 5 

simulated in the E3SM (Table 1). Although the Clapp & Hornberger model performed better by using parameters from non-

linear fitting, its performance was not as good as the Hanson and the van Genuchten models (Table 1, Fig. 1). The Hanson 

model was the best-fit model for the MOFLUX site, showing the smallest RMSE for both soil layers (Table 1, Fig. 1), and 

was therefore implemented in E3SM to calculate SWP from measured VWC. 

Table 1. Root-mean-square-error (RMSE) of different models in simulating the SWP-VWC relationship for the soil in the MOFLUX site 10 

at two depths: 0 to 30 cm and below 30 cm. 

Model < 30 cm > 30 cm 

Clapp & Hornberger (default E3SM) 4.25 1.33 

Brooks & Corey 3.91 1.13 

Clapp & Hornberger (calibrated) 0.53 0.51 

Fredlund & Xing 0.51 2.43 

Hanson 0.41 0.34 

van Genuchten 0.50 0.36 

 

The E3SM default run significantly underestimated both annual SR and GPP (Fig. 2). In addition, the simulated SR had 

smaller interannual variability compared to the observations. The model was not able to simulate the steep drop of SR or 

GPP during the extreme drought in 2012. The simulations of ST and SWP were isolated to analyse their contributions to 15 

model performance. Whereas the model simulated ST well at 10 cm depth (Fig. 3a), it tended to underestimate SWP when 

water is limiting and to overestimate SWP otherwise (Fig. 3b). Implementing the data-constrained Hanson model 

significantly improved the simulation of SWP, showing a greater R2 and a much smaller RMSE than that of the default run 

(Fig. 3b). After improving the simulation of SWP, the model better matched the observed annual SR and GPP (Fig. 2). The 

mean annual simulations of SR and GPP fell into the 95% confidence interval of observations (red bar in the inserted plot in 20 

Fig. 2). In addition, the changes in annual SR and GPP (i.e., the differences between before and after the improved SWP 

simulation) showed a linear relationship (Fig. 4). 
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Figure 2: Annual soil respiration (SR) and gross primary production (GPP). Blue and red lines are model outputs before (MODdefault) 

and after (MODswp) soil water potential improvement, respectively. Black lines and grey area are the observed (OBS) mean and 95% 

confidence interval (CI), which were calculated from 8 field replications for SR, and from three different net ecosystem exchange 

partitioning methods for GPP. The inserted bar plots are mean annual average ± 95% CI across 2005-2011 for MODdefault (blue), MODswp 5 

(red) and OBS (purple). 

 

 

Figure 3: Daily soil temperature (ST) and soil water potential (SWP) at 10 cm. Blue and red lines/dots are model outputs before 

(MODdefault) and after (MODswp) soil water potential improvement, respectively. R2 and RMSE are shown in corresponding colours. 10 

Extremely low SWP values due to frozen soil water are not shown. 

MODdefault
MODswp
OBS

a b

a

b

MODdefault

OBS
R2 = 0.87

RMSE = 2.76

MODdefault

MODswp

OBS

R2 = –4.66

0.37

RMSE =   0.48

0.16
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Figure 4: Relationship between changes in simulated annual soil respiration (SR) and gross primary production (GPP) induced 

by improvement of soil water potential in the model. 

Despite the improved simulation of SR, the model still underestimated SR and GPP during peak growing seasons when 

SR and GPP were high, but overestimated them during non-peak growing seasons (Figs. 5, Fig. S1). In other words, though 5 

the improved simulation of SWP increased SR and GPP during peak growing seasons, the model still showed systematic 

errors (Fig. 5). We attempted to improve the seasonal simulations of SR, GPP and LAI by modifying several related 

parameters (Table 2). Using measurements of NEE, maximum LAI and latent heat fluxes from the MOFLUX site, Lu et al. 

(unpublished) calibrated a polynomial surrogate model of CLM4.5. Based on their results, we modified two parameters, i.e., 

the SLA at the canopy top from 0.03 to 0.01, and the fraction of leaf nitrogen in the RuBisCO enzyme from 0.1007 to 0.12. 10 

 

 

Figure 5: Observed vs. modeled soil respiration (SR) and gross primary production (GPP). Blue and red dots are model outputs 

before (MODdefault) and after (MODswp) soil water potential improvement, respectively. The black line is 1:1 line. 

a bR2:	0.49
0.60

R2:	0.69
0.78

RMSE:	2.30
1.93

RMSE:	1.29
1.14

MODdefault

MODswp

MODdefault

MODswp
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Table 2. Modified parameters to better simulate gross primary production (GPP) and leaf area index (LAI) at the MOFLUX site in the 

E3SM. 

Parameter name 

(unit*) 

Parameter description Default model 

value  

Tuned 

values 

slatop Specific leaf area at top of canopy 0.03 0.01 

flnr Fraction of leaf nitrogen in RuBisCO enzyme 0.1007 0.12 

ndays_off (d) Number of days to complete leaf offset 15 45 

Crit_dayl (s) Critical day length for senescence 39300 43200 

 To control the rate coefficient rxfer_off to produce a 

linearly-increasing litterfall rate 

2 10 

*slatop, flnr and  are unitless 

 5 

Comparing the simulated LAI with the observations (Fig. 6), we found that the parameter ndays_off (number of days to 

complete leaf offset) in the E3SM was too short (default value = 15 days) for the MOFLUX site. Thus, we reset the value of 

ndays_off to 45 days. We also modified the values of two additional parameters, i.e., crit_dayl and correspondingly (Table 

2) Parameter crit_dayl (the critical day length for senescence, units: second) triggers the leaf falling during the end of the 

growing season. Parameter () is used to produce a linearly-increasing litter-fall rate. The adjustment of the aforementioned 10 

five parameters (Table 2) significantly reduced the LAI to within a more reasonable range, showing an increased R2 from 

0.05 to 0.91 and a reduced RMSE from 1.15 to 0.34 (Fig. 6a). However, the simulation of GPP was not improved, though the 

simulation during peak growing season was increased (Fig. 6b). The model was still not able to reach the high values of SR 

observed during peak growing seasons, even when the modeled GPP exceeded the observations (Fig. 6b, c). In addition, the 

modeled SR during non-peak growing seasons was not improved (Fig. 6c). 15 
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Figure 6 Daily leaf area index (LAI), gross primary production (GPP) and soil respiration (SR). OBS: observation; MODdefault: 

model output before soil water potential improvement; MODswp_param: model output after soil water potential improvement and parameter 

modification. a, the blue (MODdefault) and red (MODswp_param) arrows are used to illustrate the earlier start of litterfall in MODswp_param. 
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4 Discussion 

4.1 Effect of SWP on annual SR 

Constraining the SWP-VWC relationship with site-specific data and using the Hanson model instead of the E3SM default 

model (Fig. 1) significantly improved the model representation of SWP (Fig. 3). The modeled annual SR in the E3SM was 

also substantially improved (Fig. 2a). Although SWP can directly affect SR, the improved annual SR simulation was likely 5 

due to the indirect influence of SWP on GPP. The land model of E3SM underestimated GPP in this study (Fig. 2b). 

Similarly, a recent study showed that the CLM4.5 significantly underestimated GPP at a coniferous forest in northeastern 

United States as well (Duarte et al., 2017). GPP affects the substrate supply for SR, as evidenced by the close relationship 

between changes in SR and GPP (Fig. 4), which is consistent with experimental evidence showing GPP can directly affect 

the magnitude of SR (Craine et al., 1999; Högberg et al., 2001; Wan and Luo, 2003; Verburg et al., 2004; Gu et al., 2008). 10 

The simulation of SWP in the default E3SM was poor compared with that of ST (Fig. 2), which may be a common issue in 

ESMs. For example, using a reduced-complexity model, Todd-Brown et al. (2013) demonstrated that the spatial variation in 

soil C in most ESMs is primarily dependent on C input (i.e., NPP) and ST, showing R2 values between 0.62 and 0.93 for 9 of 

11 ESMs. However, the same reduced-complexity model, driven by observed NPP and ST, can only explain 10% of the 

variation in the Harmonized World Soil Database observational database (Todd-Brown et al., 2013). These previous results 15 

indicate that other important factors affecting soil C dynamics, in addition to NPP and ST, are inadequately simulated in 

ESMs (Powell et al., 2013; Reyes et al., 2017). Powell et al. (2013) showed that differential sensitivity of SR to VWC in 

several ESMs using observations in two Amazon forests. Our analyses in this study indicate that improving the modeled 

SWP can significantly improve SR simulations. Thus, we argue that the SWP simulation in ESMs should be calibrated 

carefully with observations, and/or by using different model representations of the SWP-VMC relationship. 20 

In this study, we derived better SWP-VWC relationship by using non-linear fitting, primarily because of the availability 

of soil moisture retention curve data. It is an efficient method when site-level data is available, but it is not realistic to 

calibrate the water retention curve for every site. The SWP-VWC relationship is dependent on soil texture (Clapp and 

Hornberger, 1978; Cosby et al., 1984; Tuller and Or, 2004), so building relationships between model parameters and soil 

texture may allow efficient extrapolations of site-level measurements to regional and global scales. 25 

Parameters in the default Clapp & Hornberger model used in the E3SM were derived from synthesizing data across soil 

textural classes (Clapp and Hornberger, 1978; Cosby et al., 1984; Lawrence and Slater, 2008). The data were derived from 

over 1,000 soil samples from 11 USDA soil textural classes (Holtan et al., 1968; Rawls et al., 1976). The dependence of 

model parameters on soil texture were derived from a regression of these 11 data points, i.e., the mean parameter values of 

11 soil textural classes against the sand or clay fractions (Cosby et al., 1984). Because no actual sand or clay content of soil 30 

samples was reported in the original databases (i.e., only the soil textural classes were reported), the sand and clay fractions 

used for the regression were obtained from midpoint values of each textural class (Clapp and Hornberger, 1978; Cosby et al., 

1984). One potential issue is that soil samples in the same textural classes can have different sand and clay contents and 
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SWP-VWC relationships, which may not be fully represented when they are grouped together. Consequently, the 

parameterized Clapp & Hornberger model may still perform poorly for specific sites, e.g., the MOFLUX site. A re-analysis 

of an updated SWP-VWC database, with actual sand and clay content measurements, may enable improved relationships 

between model parameters and soil texture in the water retention model. 

In addition, different empirical models have been developed to describe the SWP-VWC relationship (Brooks and Corey, 5 

1964; Clapp and Hornberger, 1978; van Genuchten, 1980; Fredlund and Xing, 1994; Hanson et al., 2003). These models 

could be evaluated with an updated SWP-VWC database, and the selected best-fit model(s) could be used to calculate SWP 

in the field from continuously monitored VWC (e.g., from AmeriFlux network) on different spatial and temporal scales. A 

new field SWP-VWC database at different scales could be used as a benchmark to improve simulations of soil water and 

biogeochemical processes in ESMs. 10 

4.2 Improving the representation of seasonal variability of SR 

Although the simulation of the SWP improved the representation of both annual SR and GPP, the E3SM continued to 

underestimate SR during peak growing seasons and overestimate SR during other seasons (Figs. 5, 6c, Fig. S1). Since it has 

been demonstrated that GPP can directly influence the magnitude of SR (Craine et al., 1999; Högberg et al., 2001; Wan and 

Luo, 2003; Verburg et al., 2004), the underestimated SR during peak growing seasons may be due to an underestimation of 15 

GPP. However, our analyses showed that the modeled SR was not able to reach the observed peak in most years even when 

the modeled GPP exceeded the observation (Fig. 6). In addition, the parameter modification increased GPP during both peak 

and non-peak growing seasons, resulting in an even greater overestimation of SR during non-peak growing seasons (Fig. 6). 

These results suggest that simply increasing GPP may not be adequate to increase the seasonal variability of the simulated 

SR. Specifically, heterotrophic respiration contributed a majority proportion (i.e., over 85%) to total SR during non-growing 20 

seasons (Fig. 7), suggesting that the overestimation of SR during these seasons was primarily due to the biased heterotrophic 

respiration simulation. 

A potential reason for the biased heterotrophic respiration simulation may be related to the temperature sensitivity (Q10). 

Theoretically, a higher Q10 can result in greater seasonal variability of SR (Fig. S2). Compared to relatively small Q10 values, 

a larger Q10 can lead to lower heterotrophic respiration when temperature is below the reference temperature, and greater 25 

heterotrophic respiration when temperature is above the reference (Fig. S2). In the E3SM, the reference temperature is 25 ºC 

and the Q10 of heterotrophic respiration is 1.5 (Oleson et al., 2013). A previous study derived a much greater Q10 value (i.e., 

2.83) when the parameters were calibrated with data from another temperate forest (Mao et al., 2016). We hypothesized that 

the Q10 value of 1.5 may be too small for the MOFLUX site. We arbitrarily increased Q10 from 1.5 to 2.5, but there were 

minimal effects on the SR simulation (Fig. S3). This indicates that modifying the temperature sensitivity of heterotrophic 30 

respiration may not improve the modeled representation of seasonality of SR in the E3SM. 
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Figure 7: Modelled contributions of autotrophic (Ra) and heterotrophic (Rh) respiration to total soil respiration (SR). 

Another potential reason for the biased heterotrophic respiration simulation may be that the seasonality of microbial 

organisms was not adequately represented in the model. Like most ESMs, the E3SM represents soil C dynamics using linear 

differential equations and assumes that SR is a substrate-limited process in the model. However, producers of CO2 in soils, 5 

microbial organisms, have a significant seasonal cycle (Lennon and Jones, 2011). These organisms usually have very high 

biomass and activity during growing season peaks with favorable conditions of temperature, moisture and substrate supply, 

and tend to be dormant under stressful conditions (Lennon and Jones, 2011; Stolpovsky et al., 2011; Wang et al., 2014; 

Wang et al., 2015). The seasonality of microbial biomass and activity, in addition to that of GPP and ST, may contribute to 

the seasonal variability of SR. 10 

Additionally, lacking representation of macroinvertebrate and other forest floor and soil fauna in the E3SM may be 

another reason. There is a high density of earthworms at the MOFLUX site (Wenk et al., 2016). Earthworms can shred and 

redistribute soil C and change soil aggregation structure, which may alter soil C dynamics and CO2 efflux to the atmosphere 

(Verhoef and Brussaard, 1990; Brussaard et al., 2007; Coleman, 2008). Like microbial organisms, earthworms usually have 

a significant seasonal cycle, showing high biomass and high activity during peak growing seasons and tending to be dormant 15 

during non-growing seasons (Wenk et al., 2016). However, a recent review suggests that current experimental evidence and 

conceptual understanding remains insufficient to support the development of explicit representation of fauna in ESMs 

(Grandy et al., 2016). Therefore, data collection focused on seasonal variations in fauna and microbial biomass and activity 

might enable further improvements in the representation of seasonal variation in SR. 
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5 Conclusions 

In this study, we used temporally extensive and spatially distributed site observations of SR to assess the capabilities of 

E3SM. These results indicated that an improved representation of SWP within the model provided better simulations of 

annual SR. This underscores the need to calibrate SWP in ESMs for more accurate projections of coupled climate and 

biogeochemical cycles. Notwithstanding this improvement, however, the E3SM still underestimated the magnitude of SR 5 

during the peak growing season and overestimated SR during the non-peak growing season. Additional adjustments of 

driving variables for SR, including GPP, LAI and the Q10 of heterotrophic respiration did not improve the model prediction. 

It may be that inadequate model representation of the seasonality of fauna and microbial organisms could be explored as 

means to achieve better fit. Future incorporation of explicit microbial processes with relevant data collection activities may 

therefore enable improved model simulations. 10 
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